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Abstract

In many markets, sellers must spend resources to learn the costs of providing goods/services.

This paper considers consumer searches in such markets. It is found that (1) even with ex ante

identical consumers and sellers, there is price dispersion in the equilibrium; (2) despite price

dispersion and minimal search costs, it could be optimal to search just two sellers; (3) the

optimal number of searches can increase with sellers’ information costs. (JEL D40, L00)
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1 Introduction

To make informed purchase decisions, consumers search. To earn their business, sellers provide

relevant information such as prices. The standard economic models of consumer search assume

that price search is costly, but price-setting is costless.1 In many markets, however, even a simple

price quote may involve nontrivial costs for the seller. For example, a mortgage lender must

evaluate a borrower’s creditworthiness before offering a rate quote;2 an insurance agent must assess

an applicant’s risk characteristics before issuing the premium; a repair shop must diagnose the

problem before giving a cost estimate. In these markets, production costs depend on consumers’

individual needs. Sellers set prices after consumer search takes place. A consumer can canvass

multiple sellers, but cannot contract on any seller’s effort in preparing the price quote.

This paper incorporates the above features into a model of consumer search where sellers observe

how many other sellers the consumer has contacted with a request for a price quote. Our goal is

to study the market impact of precontract costs, including consumer search cost and price-setting

cost. The latter cost is due to uncertainty in the production cost, which we assume to be identical

across sellers: each seller can learn the true production cost (before all sellers simultaneously

make competing price offers) if he pays an “information cost” t.3 Under price competition, the

price quotes will reflect information costs. While this observation suggests an equivalence between

consumer search and sellers’ information acquisition — both costs are ultimately paid by the

consumer — our analysis reveals an important difference: the only way to save on total search costs

is to search less, but whether the consumer can obtain a better expected price by searching just

two sellers or by searching more sellers depends on the level of the information cost. Consequently,

information costs and search costs can have different, even opposite, impacts on consumer search

behavior. Searching a large number of sellers yields a lower expected price if sellers’ willingness to

incur information costs drops sharply when they face more competitors, which turns out to be the

case for an intermediate range of, relatively high, levels of the information cost.

1It is a long tradition that began with Stigler’s seminal paper (Stigler 1961). More recently, a class of search
models with an “information clearinghouse” assume nearly the opposite, that is, zero (marginal) search cost but
positive (fixed) advertising cost (Baye and Morgan 2001).

2Woodward (2008) estimates that the “dry-hole” - applications that are processed but fail to become loans - cost
of a mortgage loan is somewhere in the range of $120 to $410.

3It should be distinguished from the so-called menu costs, originally introduced by Sheshinski and Weiss (1977).
While menu costs are unavoidable for every price change, sellers in our model can avoid the information costs should
they choose not to acquire information.
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Interestingly, however, despite price dispersion and even for very low or zero search costs,

searching just two sellers is optimal for a broad range of, either sufficiently small or sufficiently

large, information costs. The model thus provides a possible explanation for why consumers appear

to undertake surprisingly little search in relevant markets.4

This paper contributes to the understanding of transaction costs. Dahlman (1979) classifies

transaction costs into three categories based on the stages of a contract: search and information

costs (precontract), bargaining and decision costs (contract), policing and enforcement costs (post-

contract). While the impact of consumer search costs on market outcomes has been extensively

studied,5 their interaction with sellers’ information costs has so far received scant attention. A

notable exception is French and McCormick (1984), whose informal analysis of the service market

anticipates many of the themes explored in this paper. After showing that the winning bidder’s

expected profit equals the sum of his competitors’ sunk costs of bid preparation under a free-entry

condition, they argue that consumers indirectly pay for service providers’ information costs. The

focus of their paper, however, is on firms’ marketing strategies, such as how likely firms charge

for their estimates or advertise, whereas the focus of this paper is on the problem faced by the

consumer side.6

Pesendorfer and Wolinsky (2003) and Wolinsky (2005) have also considered consumer search in

the presence of information costs. Assuming that service outcomes are not contractible (but price

searches are costless), Pesendorfer and Wolinsky (2003) examine market inefficiencies when a con-

sumer must rely on second opinions to pick the right contractor. Under the assumption that sellers

can provide better matching via costly investments, Wolinsky (2005) shows that consumers’ inabil-

ity to internalize sellers’ costs leads to excessive search. Despite the similarity, these two papers

have a different focus than ours: they are concerned with prior information on product character-

4Lee and Hogarth (2000) find that a majority of mortgage borrowers consult less than three lenders or brokers.
Woodward and Hall (2012) argue that the pecuniary search costs for mortgage loans implied by the number of
searches are implausibly high. See also Honka (2014) for evidence from the US auto insurance market, Allen, Clark,
and Houde (2014) and Alexandrov and Koulayev (2017) from the US and Canadian mortgage markets, respectively,
and Stango and Zinman (2015) from the credit card market.

5See Anderson and Renault (2017) for a recent survey of consumer search theories.
6Due to the lack of formal game-theoretic analysis, the connection between assumptions and results is somewhat

opaque in their paper. For example, it is not clear whether the predicted pattern is the result of collective behavior
among sellers or the noncooperative outcome.
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istics (so there is no price dispersion), whereas our paper is concerned with prior information on

prices. Because of this difference, our results on prices do not exist in their models.7

The current paper assumes that the consumer can commit to any chosen number of searches.

A commitment is possible if the number of price requests is observed by sellers.8 This assumption

is satisfied reasonably well in the aforementioned markets. For example, in the mortgage market,

lenders can infer a consumer’s search intensity from the number of credit inquiries recorded in the

consumer’s credit report.9 The same is true in the market for auto, home, and life insurances.10

Admittedly, in other markets, the number of consumer searches may not be observable. We view our

current analysis of the commitment case as providing a useful benchmark. In a companion paper,

Miao (2020) studies consumer search behavior in a similar setting, but the number of consumer

searches is not publicly observable. It is found that, in the absence of the ability to commit,

consumers may be worse off when search costs decline. The two papers are complementary and

apply to different markets.11

Our paper is also related to Burdett and Judd (1983) (“BJ-83”). In both papers, consumers

engage in fixed-sample size searches of ex-ante identical sellers. However, they assume costless

price-setting. Because of this, consumer welfare is maximized when everyone searches exactly

twice, with prices being set at marginal costs. Moreover, price dispersion disappears when search

costs approach zero. These results are different from those of this paper.12

The remainder of the paper is organized as follows. Section 2 introduces the model. Section 3

presents some preliminary results, including a complete characterization of sellers’ equilibrium

behavior, for every number of searches. Section 4 contains our main results on the optimal number

of searches and the equilibrium impact of precontract costs. Section 5 concludes. All proofs are

given in the appendix.

7For tractability, these two models make two assumptions that are somewhat unrealistic: (1) prices are set before
diagnoses; (2) search costs are not paid until a contract offer is accepted.

8See Bagwell (1995) for a classic discussion on the relationship between commitment and observability.
9A bank’s cost of pulling consumer credit is small relative to other costs during the loan application process, so is

assumed to be negligible in this paper.
10During insurance application interviews, insurance companies often ask whether an applicant has other applica-

tions pending (https://www.nerdwallet.com/article/insurance/life-insurance-application). The answer to
this question provides another indicator of the applicant’s search intensity.

11Another difference is that this paper explicitly models sellers’ decisions on whether to acquire information, whereas
Miao (2020) follows Lang and Rosenthal (1991) by adopting a reduced-form assumption of bidding costs. Because of
this difference, the current paper obtains a richer set of results on the optimal number of searches, which could not
have been obtained for a reduced-form specification.

12See Section 4 for more details.
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2 The Model

A consumer is willing to pay v for a good or service (henceforth, the product), which can be

provided by any one of N sellers. All sellers face the same exogenously given production cost

c. This symmetry assumption ensures that equilibrium price dispersion cannot be attributed to

different cost realizations across sellers. It is also consistent with empirical research in related

markets.13 The production cost c is equal to cl with probability q ∈ (0, 1) and equal to ch with

probability 1− q, where 0 ≤ cl < ch < v (the last inequality implies that the social value of a trade

is always positive, and ensures that the consumer buys something in equilibrium).

To find the best deal, the consumer may request price quotes from different sellers. The cost of

each request (the “search cost”) is s ≥ 0. A seller who has received a request can learn the actual

value of c (before quoting a price) if he pays the “information cost” t ≥ 0. The buyer cannot learn

c. This assumption is made on the grounds that sellers have more expertise than consumers in the

relevant markets. It also ensures that sellers do not face an adverse selection problem.14 The values

of v, cl, ch, q, s and t are common knowledge. Both the consumer and the sellers are risk-neutral.

We study the (mixed-strategy) sequential equilibria (“SE”) of the following game between the

consumer, who seeks to minimize her expected total expense (the sum of the total search costs and

the price paid for the product), and the sellers, who seek to maximize their expected profits.

1. Chance decides whether c is equal to cl or equal to ch.

2. The consumer decides which sellers to contact with a request for a price quote. We let n

denote the number of contacted sellers.

3. All contacted sellers observe how many sellers have received a request, and then decide

whether to privately learn c and which price to quote (depending on either the acquired

or the prior information about c).

13For example, in her study of the auto insurance market, Honka (2014) reports that over 93% of consumers kept
their coverage choice the same during the last shopping occasion and were searching only for the lowest premium.
Similarly, in their study of the Canadian mortgage market, Allen et al. (2014) find that contracts are homogeneous,
and for a given consumer costs are mostly common across lenders due to loan securitization and a government
insurance program.

14In a model with a similar setup, Lauermann and Wolinsky (2017) assume that an auctioneer has private informa-
tion, which affects the number of bidders she solicits. Their paper, however, does not consider bidders’ precontract
costs.
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4. After receiving all price quotes, the consumer decides which offer to accept, if any.

Clearly, if there is a unique lowest price offer (below v), the consumer will choose that offer.

As is standard in the literature, we assume that if multiple sellers offer the same lowest price

the consumer selects one of these offers uniformly at random, and restrict attention to symmetric

equilibria in which all sellers choose the same strategy: for each value of n, the behavior of each

contacted seller is described by the same quadruple (α(n), Fl(·|n), Fh(·|n), Fb(·|n)), where α(n) is

the probability that the seller acquires information about the production cost, Fb(·|n) is the c.d.f.

of price quotes chosen by the seller if he remains uninformed, and Fi(·|n), i ∈ {l, h}, is the c.d.f. of

price quotes for the case that the seller has learned that the production cost is ci.

Note that, by assumption, the consumer is engaged in a fixed-sample size (“FSS”) search, as

opposed to a sequential search where the consumer visits sellers one-by-one and stops search once

her reservation price is met. We adopt this approach for two reasons: first, existing empirical

evidence suggests that FSS search provides a more accurate description of observed consumer

search behavior (De Los Santos, Hortaçsu, and Wildenbeest 2012, Honka and Chintagunta 2017);

second but particularly relevant to this model, costly information acquisition can cause delay and

a delay is a more significant problem for sequential search than for FSS search.15 For example, in

the US mortgage market, a consumer typically receives a Loan Estimate three business days after

the initial request,16 but a lender is only required to honor the terms of a Loan Estimate for ten

business days.17 Therefore, it may actually be optimal for a consumer to request price quotes from

several lenders at once, rather than one after another. For the same reason, we assume that the

consumer cannot engage in multiple rounds of search.18

We assume that s is much smaller than v, so that it is never optimal for the consumer to search

just one seller (in which case she minimizes the total search costs ns but has to pay a monopoly

price for the product). Moreover, we assume that the pool of sellers is so large that it never

constrains the consumer’s number of searches unless the consumer would like to contact infinitely

15In the same vein, Morgan and Manning (1985) and Janssen and Moraga-González (2004) argue that fixed-sample
size search is more appealing when a consumer needs to gather price information quickly.

16“Loan Estimate and Closing Disclosure: Your guides in choosing the right home loan”, Nicole Shea, Consumer
Financial Protection Bureau (CFPB), Aug 19, 2019.

17“Real Estate Settlement Procedures Act”, CFPB Consumer Laws and Regulations, March 2015.
18While it appears that the consumer could choose to search again after extracting information from early rounds

of offers, doing so would lower sellers’ incentive to acquire information and render their bids uninformative, defeating
the very purpose of searching multiple rounds.
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many sellers (in the latter case, which may happen only if s = 0, the finite number of sellers is

needed for equilibrium existence). These assumptions allow us to focus only on nontrivial cases

and to avoid purely technical case distinctions.

3 Preliminary Results

3.1 A Benchmark Result

A useful point of departure is to consider what happens if t = 0, i.e., if sellers can costlessly

learn the production cost. This is not only the assumption of a frictionless market, but also the

working assumption of almost all consumer search models. In this case, since sellers have the same

production cost, based on the standard Bertrand style argument, we can see that the prices will be

set equal to the (realized) production cost as long as there are at least two sellers. The consumer

cannot do better by visiting more than two sellers because she cannot get a better offer, nor can

she do better by visiting just one seller, who will charge a monopoly price. In equilibrium, the

consumer earns an expected surplus of v − cE − 2s, where cE = qcl + (1− q) ch is the expected

production cost. This serves as a natural benchmark for the current analysis.

The same outcome could be obtained even for positive information cost if the consumer and

sellers were able to contract on information acquisition efforts : acquiring information about the

production cost allows sellers to earn information rents, but it is purely wasteful from a social point

of view.19 Therefore, the consumer would prevent sellers from earning information rents by simply

requiring sellers not to acquire product cost information. The sellers would again compete à la

Bertrand, with each of them quoting a price of cE and earning zero profits in equilibrium, and the

consumer would earn the same expected surplus as in the benchmark. Albeit straightforward, this

result demonstrates that the information cost, in itself, does not necessarily cause a welfare loss

for the consumer. Rather, any such loss is due to the inability to contract on sellers’ information

acquisition efforts. Of course, if the information cost is so high that it exceeds sellers’ private

value of information, which equals q (1− q) (ch − cl), then no seller will learn c (even if he is not

19It should be noted that this is true because we assume ch < v. Otherwise, information acquisition will not be a
pure waste. We are grateful to an anonymous reviewer for making this point. To analyze the case where ch > v will
require us to significantly expand the game and is thus beyond the scope of this paper.
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contractually precluded from doing so), it is optimal for the consumer to obtain just two competing

price quotes, and the expected consumer surplus is again v − cE − 2s.

In all the above cases, consumer surplus is maximized when the consumer obtains two competing

price quotes.20 We summarize these observations as follows:

Observation 1 The number of searches in the unique symmetric SE is two and the expected con-

sumer surplus is v− cE − 2s if t = 0 or t ≥ q(1− q)(ch− cl). The same would obtain for all values

of t if the consumer and sellers could contract on information acquisition efforts.

For the remainder of the paper, we focus on the more interesting case for which t is positive but

not so large that it is never optimal for sellers to acquire information, i.e., t ∈ (0, q(1− q)(ch− cl)).

3.2 Sellers’ equilibrium strategy

As mentioned in Section 2, we look for symmetric equilibria where the consumer selects an offer

uniformly at random if she receives multiple lowest offers, and where all sellers use the same strategy

n 7→ (α(n), Fl(·|n), Fh(·|n), Fb(·|n)).

Lemma 1 For any t ∈ (0, q(1− q)(ch − cl)), any symmetric SE and any n ≥ 2, α(n) ∈ (0, 1).

Lemma 1 implies that sellers always randomize between submitting an informed quote and

submitting a blind quote. Our first key result, Lemma 2 below, characterizes the unique symmetric

SE strategy for sellers, which involves not only randomized learning about the production cost but

also randomized price quotes.

Lemma 2 For any t ∈ (0, q(1 − q)(ch − cl)), there is a symmetric SE, and any symmetric SE

features the same equilibrium strategy n 7→ (α∗(n), F ∗l (·|n), F ∗h (·|n), F ∗b (·|n)) for sellers. For any

20It goes without saying that the result will be different if the sellers do not have the same production cost.
In MacMinn (1980) and Spulber (1995), sellers’ price setting is equivalent to bidding in a private value auction.
Price dispersion arises from cost heterogeneity of sellers. Alternatively, even if sellers have the same cost, consumer
heterogeneity in captivity leads to an asymmetric mixed strategy Nash equilibrium (Gilgenbach 2015).
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n ≥ 2, we have

α∗(n) = 1−
(

t(1− q)
q((ch − cl)(1− q)− t)

)1/(n−1)

,

F ∗h (p|n) = 0 for p < ch and F ∗h (p|n) = 1 for p ≥ ch,

F ∗l (p|n) =
1−

(
t

q(p−cl)

)1/(n−1)

α∗(n)
for p ∈ [p∗l , p̄

∗
l ] = [cl + t/q, ch − t/(1− q)],

F ∗b (p|n) = 1− α∗(n)

1− α∗(n)

((
q(p− cl)

(1− q)(ch − p)

) 1
n−1

− 1

)−1

for p ∈ [p∗b , p̄
∗
b ] = [p̄∗l , ch],

and the expected price paid by the consumer is cE + nα∗(n)t.

Thus, sellers who learn that the production cost is ch quote price ch, uninformed sellers ran-

domize over prices between ch − t/(1 − q) and ch according to the atomless distribution F ∗b (·|n),

and sellers who learn that the production cost is cl quote even lower prices, randomizing according

to the atomless c.d.f. F ∗l (·|n) over prices between cl+ t/q and ch− t/(1−q) (the lowest price offered

by uninformed sellers). Moreover, the consumer pays for the total information costs nα∗(n)t, in

the form of a higher expected price.

Figure 1 illustrates (for q = 1/2) how the information cost affects price distributions. The red

solid curve depicts the price distribution when t = 0.2(ch − cl) and the black dashed curve when

t = 0.1(ch − cl). For each level of information cost, there are two segments of price distributions,

corresponding to informed bids (in state l) and blind bids.

From the graph, we can see that sellers are more likely to set low blind bids when t is large.

Intuitively, a larger t makes sellers less likely to acquire costly information and this means unin-

formed sellers are less likely to suffer from the winner’s curse. As a result, uninformed sellers bid

more aggressively. The effects of a larger t on the bidding behavior of a seller informed of a low

cost, however, are more complicated: on the one hand, having fewer competing bids by informed

sellers raises the lower bound of informed bids (in a way that allows informed sellers to exactly

recoup the information cost); on the other hand, more aggressive bidding by uninformed sellers
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Figure 1: (q = 1/2) The red solid curve depicts the price distribution when t′ = t/ (ch − cl) = 0.2
and the black dashed curve when t′ = 0.1.

lowers the upper bound of informed bids. Therefore, a larger t decreases the degree of dispersion

in informed bids.21 These observations are summarized in Lemma 3:

Lemma 3 (i) The range of informed bids decreases with t; (ii) The range of blind bids increases

with t; moreover, blind bids for t1 first-order stochastically dominate blind bids for t2 if t1 < t2.

4 The Optimal Number of Searches

Lemma 2 shows that when sellers acquire information, i.e., for t ∈ (0, q(1−q)(ch−cl)), the consumer

pays the total information costs nα∗(n, t)t indirectly in the form of a higher expected price.22 This

explains why the expected price depends on the number of searches, and gives us a basic intuition

for why prices might sometimes increase with the number of searches, so that the consumer may

want to limit this number to get a better price (on top of the incentive to save on search costs): even

though α∗(n, t) decreases with n (if there is more competition, each individual seller has a lower

21A standard measure of dispersion is the variance in prices. Unfortunately, we do not have an analytical solution
for the variance. Other commonly used metrics to measure price dispersion include the range of prices (Baye, Morgan,
and Scholten 2006), which is the one used here.

22We highlight the dependence of α∗ on t explicitly in the notation from now on.
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incentive to acquire information to earn information rents), the total information costs nα∗(n, t)t,

and hence the expected price, might increase with n.

The equilibrium consumer surplus can be written as v−cE−minn≥2(α∗(n, t)t+s)n. Relative to

the benchmark case, it is lower by minn≥2(α∗(n, t)t+ s)n− 2s. The term ψ(n, s, t) := (α∗(n, t)t+

s)n captures the overall impact of precontract costs, including consumer search cost and seller

information cost, on consumer welfare. It does not contribute to sellers’ profit margin and is

merely a waste caused by market frictions, but for want of a better name we shall call it the

expected markup.

To determine the equilibrium, or optimal, number no of searches by the consumer, we start by

examining how the expected markup (essentially the negative of consumer surplus) varies quali-

tatively with the number of searches, depending on the parameters s and t. Due to its technical

nature, we relegate the details of this analysis to the appendix (see Observation 2, Observation 3,

and Lemma 4) and merely summarize the results in what follows. For ease of exposition, and to

be able to use the tools of calculus, we follow Wolthoff (2017) and treat n as a continuous variable.

That is, we define the expected markup, using the formula for α∗(n, t) from Lemma 2, for all real

numbers n ∈ (1,∞). Our subsequent characterization of the optimal number of searches no, in

Proposition 1 below, will still ignore the integer constraint, but will take the constraint n ≥ 2

into account. We will also explain the (straightforward) consequences of Proposition 1 for the case

where n is again required to be an integer.

According to Lemma 4, there are three possible patterns of how the expected markup varies

with the number of searches. Figure 2 illustrates these possibilities. When the information cost t is

small (the blue dashed curve at the bottom), the expected markup monotonically increases with n.

When t is large but s is zero (the black dotted curve in the middle), the total information cost, and

hence the expected markup, is unimodal (i.e., first increasing and then decreasing) in n. When t is

large and s is positive (the red solid curve at the top), the expected markup increases up to a local

maximum n1 = n1(s, t), then decreases up to a local minimum n2 = n2(s, t), and then increases

again for n > n2.

Hence, if s > 0, there are at most two candidates for the optimal number of price quotes no, i.e.,

the solution to the problem minn∈[2,N ] ψ(n, s, t), namely n = 2 and n = n2 (recall that we maintain

the constraint n ≥ 2 but ignore the integer constraint here, and that N is assumed sufficiently
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Figure 2: (q = 1/2) The expected markup as a function of n. Blue dashed (t = 0.05(ch−cl), s = 0),
Black dotted (t = 0.15(ch − cl), s = 0), Red solid (t = 0.15(ch − cl), s = 0.005(ch − cl)).

large so as not to constrain the consumer’s choice), and no can in principle be determined by

comparing ψ(2, s, t) and ψ(n2, s, t), and by checking whether n2 actually satisfies the constraint

n2 ≥ 2. This task is complicated by the fact that there is no analytical solution for n2(s, t). Still,

our detailed study of the expected markup function in Lemma 4, combined with a few additional

arguments, allows us to make the relevant comparison (and thus to characterize when no = 2 and

when no > 2) for all values of t and all s > 0. Similarly, if s = 0, the only candidates for no are

n = 2 and n = N . Assuming once again that N is very large, no can be determined by comparing

ψ(2, s, t) and limn→∞ ψ(n, s, t), which (given Lemma 4) is a fairly straightforward task.

To state Proposition 1, we define

γ(t) := − ln
t(1− q)

q((ch − cl)(1− q)− t)

for all t ∈ (0, q(1 − q)(ch − cl)). Note that the function γ is strictly decreasing and satisfies

limt→0 γ(t) = +∞ and limt→q(1−q)(ch−cl) γ(t) = 0. Its inverse, γ−1, satisfies γ−1(x) = q(1−q)(ch−cl)
(1−q)ex+q

for all x > 0. The cutoffs t∗(s), t1(s), t2(s), and s̄ occurring in the statement of Proposition 1 are

characterized explicitly in Observation 3 in the appendix and satisfy the following properties. For

all s ∈ (0, s̄), we have 0 < t∗(s) ≤ t1(s) < t2(s) < q(1− q)(ch − cl), with t∗(s) = t1(s) if and only if
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γ(t∗(s)) = 1. Moreover, t∗ is continuous and strictly increasing (i.e., γ(t∗(s)) is strictly decreasing

in s), with γ(t∗(0)) = 2 and γ(t∗(s̄)) < 1, t1 is strictly increasing and t2 is strictly decreasing.

Proposition 1 (i) If s = 0, then there is a unique value t̂(0), satisfying γ(t̂(0)) ≈ 1.594, (i.e.,

t̂(0)
ch−cl ≈

q(1−q)
4.92(1−q)+q ), such that no = 2 if t < t̂(0), whereas no = N if t > t̂(0).

(ii) If s is positive but small enough for γ(t∗(s)) > 1 to hold, then no = 2 if t < t∗(s) or t > t2(s),

and no > 2 if t ∈ (t1(s), t2(s)). Furthermore, we have no = 2 for some values t ∈ (t∗(s), t1(s))

(including all values sufficiently close to t∗(s)), and no > 2 for other values in t ∈ (t∗(s), t1(s))

(including all values sufficiently close to t1(s)).23

(iii) If s is large enough for γ(t∗(s)) ≤ 1 to hold but smaller than s̄, then no > 2 if t ∈

(t1(s), t2(s)), and no = 2 if t < t1(s) or t > t2(s).

(iv) If s ≥ s̄, no = 2 for all t ∈ (0, q(1− q)(ch − cl)).

Proposition 1 shows that the optimal number of searches is “often” two, 24 but it also reveals

when searching more than two sellers is optimal: this is the case if the search cost is not too large

(below s̄) and the information cost is in a “mid-range” (equal to (t̂(s), t2(s)) for small values of s,

and equal to (t1(s), t2(s)) for larger values of s). In particular, the optimal number of searches is

non-monotonic in t. The result is visualized in Figure 3 (for q = 1/2), which shows in particular

how the range of information costs for which no > 2 shrinks as s increases. The region will of

course be even smaller if the integer constraint for n is taken into account.

At first glance, the result that a consumer only needs to search twice in a market of homogeneous

sellers may not be surprising. For example, the same result holds in BJ-83 based on the standard

Bertrand style argument. However, there is a crucial difference. In BJ-83, if a consumer searches

twice, then there will be no price dispersion, eliminating the need for further search. In the present

model, a consumer searches twice despite price dispersion, because additional searches would change

sellers’ bidding strategies, potentially raising prices. It follows that, if search costs are zero, the

“law of one price” will hold in BJ-83, but not in the present model.

23In the proof of Proposition 1, we give the precise condition that determines whether no = 2 or no > 2 for a
given t ∈ (t∗(s), t1(s)) when γ(t∗(s)) > 1. Numerically, we then find (non-surprisingly) that there is a unique value
t̂(s) ∈ (t∗(s), t1(s)) such that no = 2 if t < t̂(s), and no > 2 if t > t̂(s). Thus, if s > 0 and γ(t∗(s)) > 1, we find that
no > 2 if t ∈ (t̂(s), t2(s)), and no = 2 for t < t̂(s) or t > t2(s).

24Honka (2014) finds that consumers get on average 2.96 quotes with the majority of consumers collecting two or
three quotes when purchasing auto insurance policies.
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Figure 3: The Optimal Number of Searches, where q = 1/2, t′ = t/(ch − cl) and s′ = s/(ch − cl).
The decreasing part of the red curve shows t2(s), the black part of the curve shows t̂(s), and the
increasing part of the red curve shows t1(s) when γ(t∗(s)) < 1.

Our finding that searching two sellers is optimal for a broad range of information costs even if

s is small is more similar to that of Che and Gale (2003), who find it optimal to include only two

contestants in a research contest.25 In their model, restricting entry to two competitors decreases

the coordination problem of competing contestants and minimizes the duplication of fixed costs.

Similarly, in the present model, limiting the number of bidders reduces duplication in wasteful

information acquisition. However, unlike many other papers with a similar result, the present paper

also shows that the consumer can sometimes benefit from expanding her search effort, especially

when the search cost is small and the information cost is relatively large. The impact of the search

cost is quite obvious, but the effect of the information cost is not. When the information cost rises,

one might expect the consumer to search less since she has to indirectly pay for sellers’ information

costs, but this intuition is of course incomplete because it ignores the effect of an increase in n

on sellers’ incentive to acquire information. To provide further intuition for our findings, we plot

α∗(n, t)/α∗(2, t) in Figure 4. The graph illustrates two properties. First, sellers are less likely to

acquire information when t is large. This is obvious. Less obvious is the other property, namely,

25A similar result is also found in auctions with entry (e.g., Harstad 1990, Levin and Smith 1994), and for research
tournaments (Taylor 1995, Fullerton and McAfee 1999, Dizdar 2021).
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Figure 4: y = α∗(n, t)/α∗(2, t) for q = 1/2 and t′ = t/(ch − cl) ∈ {0.02, 0.1, 0.15}.

α∗ decreases in n at a faster rate when t is large. This is why increasing the number of searches

can reduce the wasteful and duplicative information acquisition efforts for larger values of t.

4.1 Comparative Statics

Here, we further examine the impact of search cost and information cost on the equilibrium outcome.

We have already seen above that the range of values of t for which it is optimal to demand price

quotes from more than two sellers shrinks as s increases. The next proposition shows furthermore

that the optimal number of searches decreases with s.

Proposition 2 For any s < s̃, if n ∈ argminn′∈[2,N ]ψ(n′, s, t) and ñ ∈ argminn′∈[2,N ]ψ(n′, s̃, t),

then ñ ≤ n.

Combined with our previous finding that no is non-monotonic in t, Proposition 2 shows in

particular that search costs and information costs have different impacts on consumers’ search

behavior, even though they both contribute to the overall precontract costs. This means that it

is not only the total costs, but also the composition of the costs, that matter to consumer search.

A similar result exists for two-sided markets, but the underlying mechanism is much different. In

two-sided markets the composition of costs matters because the costs imposed on one side cannot
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be fully internalized by the other side of the market, whereas in this model it matters despite

consumers’ full internalization of sellers’ costs.

Let ϕ(s, t) := ψ(no(s, t), s, t) denote the equilibrium expected markup. Proposition 3 examines

the welfare impact of the two costs.

Proposition 3 The equilibrium expected markup ϕ(s, t) increases with s, and is unimodal in t.

Perhaps not surprisingly, the consumer benefits from a lower search cost. It is already clear, from

our previous results that total information costs are zero and the consumer visits only two sellers if

t = 0 or t ≥ q(1−q)(ch−cl), whereas there are positive amounts of (wasteful) information acquisition

efforts for t ∈ (0, q(1 − q)(ch − cl)), that the equilibrium expected markup is not monotonic in t.

The additional insight here is the unimodality of ϕ(s, ·), which we establish using a combination of

analytical and numerical arguments.

4.2 Economic Significance of Information Costs

In order to evaluate the economic significance of information costs, we focus on the case s = 0, and

compute the ratio between the equilibrium expected markup ϕ(0, t) = no(0, t)α∗(no(0, t), t)t and the

consumer’s expected total expense in the benchmark case without information costs, cE+2s = cE .26

Recall that no(0, t) is either 2 or N .

Figure 5 plots the ratio between the expected markup if the consumer requests n = 2 price

quotes and cE (ψ(2, 0, t)/cE , the solid curve) and the corresponding ratio if the consumer requests

“infinitely many” price quotes (limn→∞ ψ(n, 0, t)/cE , the dashed curve), for q = 1/2. The lower

envelope of the two curves corresponds to ϕ(0, t)/cE . As we can see from the graph, the existence

of a small incontractible information cost (between 0 and (ch − cl)/4) can potentially increase the

consumer’s total expense by almost thirty percent. This demonstrates that it is not a negligible

cost and should be taken seriously not only for its theoretical interest, but also for its practical

importance. Interestingly, it offers an alternative explanation for why car buyers obtain signifi-

cantly more of the surplus available under customer rebates than under dealer discounts, a finding

that is counter to the simple invariance of incidence analogy (Busse, Silva-risso, and Zettelmeyer

26Computing ratios of consumer surplus instead does not make much sense, as v is arbitrary in our model.
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Figure 5: ϕ(0, t)/cE (the lower envelope of the dashed and the solid curve) as a function of t′ =
t/(ch − cl), for (q = 1/2).

2006). Busse et al. (2006) test several hypotheses and find evidence consistent with the asymmet-

ric information hypothesis, that is, car buyers are disadvantaged in negotiations because they are

less informed than dealers about the availability of dealer discounts. In contrast, the parties are

symmetrically informed about the availability of customer rebates, which are always publicized to

potential customers, often in prime-time television advertisements. Note that their explanation

is based on the assumption that the information about dealer discounts is readily accessible to

dealers. However, these discounts are often in the form of conditional discounts, depending on

the geographical location and/or the specific equipment package, or “trim level”. This means that

there may be higher information costs for dealer discounts than for customer rebates.27 Thus, the

result that dealer discounts have a smaller pass-through can also be predicted by our model.

27According to a website specialized in automobile markets: “Even if you are the only customer in the dealership,
there is still no guarantee you’ll be able to get a deal offer in a flash. If you’re taking out a loan, the sales manager
might have to run your credit to get your credit score. He’ll call the finance department to get your interest rate,
and then look up specials and incentives on your car to make sure you’re getting the right program offer for the right
car. Sometimes it just takes a while to get all the information together.” Matt Jones, “Behind the Scenes at A Car
Dealership”, April 29th, 2016, https://www.edmunds.com/car-buying/behind-the-scenes-at-a-car-dealership.
html.
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5 Conclusion

When consumers search, they incur costs. To provide consumers with the information they search

for, sellers may also incur costs. This paper departs from most existing literature by assuming that

sellers must make an effort to learn the cost of providing the goods/services before they bid against

other sellers. Recent empirical studies have documented surprisingly few searches conducted by

consumers when shopping for financial products. The lack of consumer search has been attributed

to high search costs and non-price preferences. Our result, however, suggests that the choice of

a small sample size when consumers search is not necessarily due to high search costs. It is also

consistent with the existence of information costs. Empirical studies that do not take into account

sellers’ information costs may overestimate consumer search costs or the impact of other factors.

Clearly, a key assumption underlying our analysis is that the number of searches is publicly

observable.28 More realistically, the number of searches may be observed by some sellers but not

all. Or, some measure of search intensity is observable, but the precise number of searches is not. In

other words, the number of searches may be observed imperfectly. We hope to relax the assumption

of perfect observability and explore related issues in future research.

Another potential extension of the model is to study search intermediaries such as brokers, who

play a prominent role in relevant markets. In a two-sided matching model, Shi and Siow (2014)

find that brokers can help reduce the costs of market participants through inventory management,

thereby improving welfare. Similarly, introducing intermediaries into our model and analyzing the

welfare consequence will help us better understand their roles in search markets.
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Appendix

Proof of Lemma 1. For any n ≥ 2, if α(n) were equal to 1 then, by the standard Bertrand/common

value auction reasoning, sellers would have to set their price equal to the realized cost in equilib-

rium. As a result, net of the information cost t, their profits would be negative, and each seller

could profitably deviate to not learning c and quoting price ch (which yields a net profit of zero).

Conversely, if α(n) were equal to 0, sellers would necessarily have to set price cE in equilibrium,

and thus earn zero profits. But, for each seller it would then be profitable to learn c, and to charge

a price just below cE if c = cl and a price equal to ch if c = ch. Indeed, the resulting change in

profit is (arbitrarily close to)

q
n− 1

n
(cE − cl) + (1− q) 1

n
(ch − cE)− t = q(1− q)(ch − cl)− t > 0.

This concludes the proof.

Proof of Lemma 2. The main tasks are showing uniqueness and deriving the explicit form of

sellers’ equilibrium strategy from necessary conditions. It will then be straightforward to verify

that n 7→ (α∗(n), F ∗l (·|n), F ∗h (·|n), F ∗b (·|n)) is indeed an equilibrium strategy.

Let n 7→ (α(n), Fl(·|n), Fh(·|n), Fb(·|n)) be sellers’ strategy in some symmetric SE. We will

show that for all n ≥ 2, (α(n), Fl(·|n), Fh(·|n), Fb(·|n)) must be (α∗(n), F ∗l (·|n), F ∗h (·|n), F ∗b (·|n)).

To ease notation, we fix n ≥ 2 and write (α, Fl, Fh, Fb) for (α(n), Fl(·|n), Fh(·|n), Fb(·|n)) and

(α∗, F ∗l , F
∗
h , F

∗
b ) for (α∗(n), F ∗l (·|n), F ∗h (·|n), F ∗b (·|n)). For i ∈ {l, h, b}, we set p

i
:= min supp Fi

(the lowest price in the support of Fi) and p̄i := max supp Fi (the highest price in the support of

Fi). Moreover, Λi denotes the conditional expected profit (without substracting the information

cost t) of an informed seller in state i ∈ {l, h} (henceforth, a “type i seller”) and Λb denote the

conditional expected profit of an uninformed seller (henceforth, a “type b seller”), in the considered

equilibrium (i.e., if all sellers play the mixed action (α, Fl, Fh, Fb) after having observed n). Of

course, by definition of a mixed-strategy equilibrium, for each i ∈ {l, h, b}, the type i seller’s

expected profit from charging any price in supp Fi must be equal to Λi, which must be weakly

higher than the expected profit associated with any price not in supp Fi. Furthermore, since

α ∈ (0, 1) by Lemma 1, sellers must be indifferent between acquiring information and not acquiring
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information, that is:

(5.1) qΛl + (1− q)Λh − t = Λb.

We note first that neither Fh nor Fb can have an atom at a price p > ch (otherwise, charging

a price just below the atom would increase profits) and that, similarly, Fl cannot have an atom

at a price p > cl. We now show Fh = F ∗h . First, ph ≥ ch (otherwise, as α and hence the

probability that all other sellers are also informed is strictly positive, charging price ph would yield

a negative expected profit, whereas charging price ch guarantees a non-negative profit). Second,

p̄h ≤ ch. Indeed, for the sake of deriving a contradiction, suppose that p̄h > ch. It then follows

that max{p̄l, p̄b} < p̄h: otherwise p̄i = max{p̄l, p̄b, p̄h} for either i = l or i = b. The “type” i for

which this is true would then earn zero expected profit from charging the price p̄i ∈ supp Fi (as the

probability that the consumer accepts this offer is zero, given that Fl, Fb and Fh do not have atoms

at prices above ch), but strictly positive expected profits from certain lower prices (e.g. for p = ch).

Thus, max{p̄l, p̄b} < p̄h, which (by an analogous reasoning) implies that the expected profit from

charging price p̄h, and hence Λh, must be equal to 0. However, given that p̄h > ch, a seller who has

learned that the cost is ch and charges a price in (ch, p̄h) earns a strictly positive expected profit (as

α > 0). This contradiction shows that we must have p̄h ≤ ch, and hence Fh = F ∗h . In particular,

Λh = 0.

Given Fh = F ∗h , an argument akin to the one given in the previous paragraph shows max{p̄l, p̄b} ≤

ch. Next, as we have argued above, Fl cannot have atoms at prices above cl. Moreover, Λb ≥ 0, as an

uninformed buyer can guarantee a zero expected profit by charging a sufficiently high price (which

is equivalent to not making an offer). Thus, by (5.1) and Λh = 0, we also have Λl = t+Λb
q > 0, and

hence p
l
> cl. In particular, Fl is atomless.

We now turn to a key step in the proof, which is showing that Fb has no atoms. First, Fb

cannot have an atom at a price strictly above ch (see above), a price weakly below cl (as this would

entail a negative expected profit) or at ch, as deviating from ch to a slightly lower price would then

increase the probability of gaining ch− cl (in state l) by a discrete amount (as the probability that

all other sellers are uninformed is strictly positive) but lead only to a marginal loss in state h.

22



Assume then that Fb has an atom at a price pm ∈ (cl, ch). Let Pw(p|ci) denote the probability

of winning with bid p in state i ∈ {l, h} (i.e., conditional on the state), provided that all other

n− 1 sellers behave according to (α, Fl, Fh, Fb). We also define Pw(p−|ci) := limp′→p,p′<p P
w(p′|ci),

Pw(p+|ci) := limp′→p,p′>p P
w(p′|ci), as well as ∆−i := Pw(p−m|ci)−Pw(pm|ci) and ∆+

i := Pw(pm|ci)−

Pw(p+
m|ci). Thus, for a type b seller (who believes that all others behave according to (α, Fl, Fh, Fb)),

the (discrete) effect on his expected utility of marginally decreasing his price at pm is q(pm−cl)∆−l +

(1−q)(pm−ch)∆−h , and the (discrete) effect of marginally increasing his price is q(pm−cl)(−∆+
l )+

(1 − q)(pm − ch)(−∆+
h ). A necessary condition for equilibrium is that both of these effects are

weakly negative, i.e.,

q(pm − cl)∆−l + (1− q)(pm − ch)∆−h ≤ 0(5.2)

q(pm − cl)∆+
l + (1− q)(pm − ch)∆+

h ≥ 0.(5.3)

In particular, as q(pm − cl) > 0 and (1− q)(pm − ch) < 0, it follows that we must have

(5.4)
∆−h
∆−l
≥

∆+
h

∆+
l

⇔
∆−h
∆+
h

≥
∆−l
∆+
l

,

and that if equality holds in (5.4), equality must hold in both (5.2) and (5.3).

We now spell out ∆−l , ∆+
l , ∆−h and ∆+

h . To this end, let P(k,j,i) denote the probability, con-

ditional on state i ∈ {l, h}, that exactly k ∈ {1, ..., n − 1} other sellers are uninformed, exactly

j ∈ {1, ..., k} of these uninformed sellers bid exactly pm, the remaining k − j uninformed sell-

ers make bids above pm, and all n − 1 − k informed sellers also bid higher than pm. Setting

ν := Fb(pm) − limp→pm,p<pm Fb(p) (the mass of the atom), we can express P(k,j,l) and P(k,j,h) as

follows (note that 1− Fh(pm) = 1, as pm < ch, and that, by the usual convention, 00 = 1).

P(k,j,l) =

(
n− 1

k

)
(α(1− Fl(pm)))n−1−k(1− α)k

(
k

j

)
νj(1− Fb(pm))k−j(5.5)

P(k,j,h) =

(
n− 1

k

)
αn−1−k(1− α)k

(
k

j

)
νj(1− Fb(pm))k−j(5.6)
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In particular, P(k,j,l) = P(k,j,h)(1 − Fl(pm))n−1−k. We have (recall that if a seller is one of j + 1

sellers making the lowest offer, the consumer buys from him with probability 1/(j + 1)):

∆−l =

n−1∑
k=1

k∑
j=1

P(k,j,l)
j

j + 1
=

n−1∑
j=1

j

j + 1

n−1∑
k=j

P(k,j,h)(1− Fl(pm))n−1−k(5.7)

∆+
l =

n−1∑
k=1

k∑
j=1

P(k,j,l)
1

j + 1
=

n−1∑
j=1

1

j + 1

n−1∑
k=j

P(k,j,h)(1− Fl(pm))n−1−k(5.8)

∆−h =

n−1∑
k=1

k∑
j=1

P(k,j,h)
j

j + 1
=

n−1∑
j=1

j

j + 1

n−1∑
k=j

P(k,j,h)(5.9)

∆+
h =

n−1∑
k=1

k∑
j=1

P(k,j,h)
1

j + 1
=

n−1∑
j=1

1

j + 1

n−1∑
k=j

P(k,j,h)(5.10)

Note also that an atom of Fb cannot belong to suppFl: otherwise the type l seller would like to

set prices arbitrarily close to but below the atom, contradicting the existence of a best response.

We now proceed to show that our assumption that Fb has an atom pm ∈ (cl, ch) leads to a

contradiction.

Assume first that pm < pl. This yields 1 − Fl(pm) = 1, and hence ∆−l = ∆−h and ∆+
l = ∆+

h .

Thus, (5.4) holds with equality, so equality holds in (5.2) and (5.3), and the location of the atom

is uniquely pinned down by q(pm − cl) + (1 − q)(pm − ch) = 0, i.e., pm = cE . Moreover, because

(5.3) holds with equality (i.e., for an uninformed seller, the limit of expected profits associated

with prices converging from above to pm is equal to (not strictly lower than) the expected profit

associated with setting price pm), there can be no gap in supp Fl ∪ supp Fb with lower boundary

pm: otherwise, the uninformed seller would get a strictly higher expected profit from charging

any price in this gap than from charging pm (as different prices in the gap entail the exact same

winning probability). By analogous reasoning, all prices in the non-empty interval (pm, pl] belong

to supp Fb and hence yield the same expected profit Λb for the uninformed seller, i.e., q(p− cl)[α+

(1 − α)(1 − Fb(p))]n−1 + (1 − q)(p − ch)[α + (1 − α)(1 − Fb(p))]n−1 = Λb for all p ∈ (pm, pl]. As

(1− q)(p− ch)[α+ (1−α)(1−Fb(p))]n−1 is increasing in p on (pm, pl] (as pl < ch), this implies that

the expected profit for a type l seller from charging such prices, (p− cl)[α+ (1− α)(1−Fb(p))]n−1

is decreasing in p over this interval. This contradicts pl ∈ supp Fl.
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Assume thus from now on that pm > pl. Consider the case n = 2 first. Then, ∆−l = ∆+
l and

∆−h = ∆+
h , which again implies that (5.4) holds with equality, so equality holds in (5.2) and (5.3),

and the location of the atom is uniquely pinned down at pm = cE . An argument analogous to the

one given in the previous paragraph then shows that pm < p̄l is not possible (the role played by pl

in the previous paragraph is now played by the smallest price in supp Fl that lies above pm). Thus,

we must have pm > p̄l. But, because of the equality in (5.3), it again follows that there can be no

gap in supp Fb starting at pm, and that the entire interval [pm, ch] must then belong to supp Fb. In

particular, Λb = 0, and q(p−cl)((1−α)(1−Fb(p)))n−1 +(1−q)(p−ch)((α+(1−α)(1−Fb(p)))n−1 =

Λb = 0 for all p ∈ (pm, ch]. This implies

(5.11) Fb(p) = 1− α

1− α

((
q(p− cl)

(1− q)(ch − p)

) 1
n−1

− 1

)−1

for all p ∈ (pm, ch]. In particular, pm would have to be greater than the price for which the right

hand side of (5.11) is 0, which is false, because the latter price is p = (1−q)ch+q(1−α)n−1cl
(1−q)+q(1−α)n−1 > cE

(where the inequality holds due to α > 0). Contradiction.

Consider now the remaining case, n ≥ 3 and pm > pl (i.e., 1 − Fl(pm) < 1). In this case,

(1−Fl(pm))n−1−k is non-constant and nondecreasing in k ∈ {1, ..., n−1} (it is strictly increasing if

1−Fl(pm) > 0; if 1−Fl(pm) = 0, then (1−Fl(pm))n−1−k = 0 for all k ≤ n−2 and (1−Fl(pm))n−1−k =

1 for k = n − 1). This observation and formulas (5.7)-(5.10) imply however that
∆−h
∆+
h

<
∆−l
∆+
l

,

i.e., (5.4) does not hold. Indeed, note that
∆−l
∆+
l

can be interpreted as the expected value of the

probability distribution on {1, ..., n − 1} that puts mass 1
j+1

∑n−1
k=j P(k,j,h)(1 − Fl(pm))n−1−k/∆+

l

on point j ∈ {1, ..., n − 1}, and that
∆−h
∆+
h

can similarly be interpreted as the expectation of the

probability distribution on {1, ..., n − 1} that puts mass 1
j+1

∑n−1
k=j P(k,j,h)/∆

+
h on point j. It is

straightforward to check that because (1 − Fl(pm))n−1−k is non-constant and nondecreasing in k,

the former distribution first order stochastically dominates the latter, which implies
∆−l
∆+
l

>
∆−h
∆+
h

.

This concludes the proof that Fb is atomless.

It now follows easily that (α, Fl, Fh, Fb) must be equal to (α∗, F ∗l , F
∗
h , F

∗
b ). First, we have

already seen that max{p̄l, p̄b} ≤ ch. Secondly, as Fb and Fl are atomless, supp Fl ∪ supp Fb must

be equal to [min{pl, pb}, ch] (if supp Fl ∪ supp Fb ∪ supp F ∗h had a gap, the type of seller whose

bid distribution contains the lower boundary of the gap could increase his profit by choosing a
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price in the gap instead). Third, we must have p̄l = pb. Indeed, consider two prices p1 < p2 from

supp Fl. The indifference condition for the type l seller yields (p1− cl)(α(1−Fl(p1)) + (1−α)(1−

Fb(p1)))n−1 = (p2 − cl)(α(1 − Fl(p2)) + (1 − α)(1 − Fb(p2)))n−1. As the expected profit for the

type b seller from charging price p ∈ {p1, p2} is q(p − cl)(α(1 − Fl(p)) + (1 − α)(1 − Fb(p)))n−1 +

(1 − q)(p − ch)(α + (1 − α)(1 − Fb(p)))
n−1 and (p − ch)(α + (1 − α)(1 − Fb(p)))

n−1 is strictly

increasing in p for p < ch, the type b seller strictly prefers p2 to p1. Thus, p̄l = pb. Fourth, it

now follows that Fb must be of the form (5.11) with pb = (1−q)ch+q(1−α)n−1cl
(1−q)+q(1−α)n−1 (see the argument in

the paragraph where (5.11) was derived) and p̄b = ch. Fifth, the indifference condition for type l

sellers, i.e., that (p − cl)(α(1 − Fl(p)) + (1 − α))n−1 = Λl = t/q must hold for p ∈ [pl, p̄l] yields

Fl(p) =

(
1−

(
t

q(p−cl)

)1/(n−1)
)
/α, as well pl = cl + t/q and p̄l = cl + t

q(1−α)n−1 . From p̄l = pb it

then follows that α = 1−
(

t(1−q)
q((ch−cl)(1−q)−t)

)1/(n−1)
. Plugging this back into the formula for pb, we

obtain pb = ch − t/(1− q). This concludes the proof that (α, Fl, Fh, Fb)=(α∗, F ∗l , F
∗
h , F

∗
b ).

That (α∗, F ∗l , F
∗
h , F

∗
b ) indeed satisfies the necessary and sufficient conditions for a symmetric

mixed-strategy equilibrium is almost immediate from the above derivations, so we omit repeating

the details. Finally, as for each n ≥ 2, sellers earn zero expected net profits (0 = Λb = qΛl + (1 −

q)Λh − t) and the total surplus equals v − cE − n(s + α∗(n)t), it follows that the expected price

paid is cE + nα∗(n)t.

Proof of Lemma 3. By Lemma 2, p∗l = cl + t/q, p̄∗l = p∗b = ch − t/(1 − q), p̄∗b = ch. The first two

results immediately follow. Last, since α∗ decreases with t, F ∗b (p) increases with t, implying that

blind bids for a smaller t first-order stochastically dominate blinds bids for a larger t.

To prepare the proof of Lemma 4 and Proposition 1, we define

g(γ) := eγ−2(4/γ − 1) and h(γ) := e−γ(2γ + 1)

for all γ > 0 and note the following observations.

Observation 2 (i) g is strictly decreasing, g(2) = 1, limγ→0 g(γ) =∞ and limγ→∞ g(γ) = −∞.
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(ii) h is unimodal, attains its maximum at γ = 1
2 , and satisfies h(1) = g(1), h(γ) < g(γ) for

all γ ∈ [0, 2] \ {1}, and h(0) = 1. Moreover, the function h ◦ γ is concave in the part where it is

decreasing, i.e., for t > γ−1(1
2) = q(1−q)(ch−cl)

(1−q)e1/2+q
.29

Observation 2 immediately implies the following facts.

Observation 3 (i) For each s ≥ 0, there is a unique value t∗(s) ∈ (0, q(1− q)(ch − cl)) for which

1 + s/t = g(γ(t)) (hence, 1 + s/t ≷ g(γ(t)) for t∗(s) ≷ t). Moreover, γ(t∗(0)) = 2, and γ(t∗(s)) is

strictly decreasing in s, i.e., t∗(s) is strictly increasing in s.

(ii) Let s̄ denote the unique value of s for which mint∈(0,q(1−q)(ch−cl)) 1 + s/t− h(γ(t)) = 0. For

any s < s̄ (i.e., 1+s/t < h(γ(t)) holds for some value of t), there are unique values t1(s) and t2(s),

satisfying t∗(s) ≤ t1(s) < t2(s) < q(1 − q)(ch − cl) and γ(t2(s)) < 1/2 such that 1 + s/t < h(γ(t))

for t ∈ (t1(s), t2(s)) and 1 + s/t > h(γ(t)) for t < t1(s) and for t > t2(s). Moreover, t∗(s) = t1(s)

if and only if γ(t∗(s)) = 1, and γ(t∗(s)) > 1 implies γ(t1(s)) > 1.

Part (i) of Observation 3 is obvious. For part (ii), note that the strictly decreasing function

t 7→ 1 + s/t can intersect h ◦ γ at most once in the interval where h ◦ γ is increasing, i.e., for

t ≤ γ−1(1
2). Moreover, if 1 + s/t − h(γ(t)) < 0 holds for some value of t, then, as t 7→ 1 + s/t is

strictly convex, h ◦ γ is strictly concave for t > γ−1(1
2), and h(0) = 1 < 1 + s

q(1−q)(ch−cl) , there must

be exactly two points of intersection, t1(s) < t2(s) (and t2(s) must be in the part where h ◦ γ is

decreasing). Next, if γ(t∗(s)) 6= 1 then h(γ(t∗(s))) < g(γ(t∗(s))), so that 1 + s/t > h(γ(t)) for t

close to t∗(s), which implies t1(s) > t∗(s). On the other hand, if γ(t∗(s)) = 1 then (as h(1) = g(1)),

t1(s) = t∗(s). Finally, if γ(t∗(s)) > 1 then h(1) = g(1) and the monotonicity properties of h imply

γ(t1(s)) > 1. This explains Observation 3.

Lemma 4 (i) If t ≤ t∗(s) (i.e., 1+s/t ≥ g(γ(t))) then ψ(n, s, t) strictly increases with n on (1,∞).

(ii) If t > t∗(s) it holds:

(ii.a) If s = 0, then ψ(n, s, t) is unimodal in n on (1,∞).

29The last claim is the only part of Observation 2 that is not completely straightforward to check, so let us explain
how to prove it. As (h◦γ)′′(t) = h′′(γ(t))(γ′(t))2+h′(γ(t))γ′′(t), we compute h′(γ) = e−γ(1−2γ), h′′(γ) = e−γ(2γ−3),

γ′(t) = − a
t(a−t) and γ′′(t) = a(a−2t)

t2(a−t)2 , where a = (1 − q)(ch − cl). Clearly, h′′(γ) < 0 and |h′′(γ)| > h′(γ) for all

γ < 1/2. As a > q(1 − q)(ch − cl) > t, we also have γ′(t)2 > |γ′′(t)|, and it follows that (h ◦ γ)′′(t) < 0 for all

t > q(1−q)(ch−cl)
(1−q)e1/2+q .
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(ii.b) If s > 0, then ψ(n, s, t) has exactly two critical points on (1,∞), a local maximum n1 =

n1(s, t) and a local minimum n2 = n2(s, t), satisfying n1 < n2. If 1 + s/t < h(γ(t)) then n1 < 2 <

n2. If 1 + s/t > h(γ(t)) and γ(t) > 1 then 2 < n1 < n2. If 1 + s/t > h(γ(t)) and γ(t) < 1 then

n1 < n2 < 2.

(iii) For all (s, t), limn→∞ ψ(n, s, t)− (ns+ γ(t)t) = 0.

Proof of Lemma 4. To prove the lemma, it will be useful to define the following function for all

z > 0, γ > 0 and x ≥ 0:

(5.12) φ(z, γ, x) := γ
(1 + x)ez − 1

z(z + γ)
.

Indeed, noting that α∗(n, t) = 1 − e−γ(t)/(n−1) and defining z(n, t) := γ(t)
n−1 , we have α∗(n, t) =

1− e−z(n,t) and n = γ(t)
z(n,t) + 1, and we may express the expected markup ψ(n, s, t) as follows:

(5.13) ψ(n, s, t) = (α∗(n, t)t+ s)n =
((

1− e−z(n,t)
)
t+ s

)( γ(t)

z(n, t)
+ 1

)
.

Using ∂z
∂n(n, t) = − z2(n,t)

γ(t) , a straightforward computation then yields

(5.14)
∂ψ

∂n
(n, s, t) = tz(n, t)e−z(n,t)

γ(t) + z(n, t)

γ(t)
(φ(z(n, t), γ(t), s/t)− 1).

Thus, ∂ψ
∂n (n, s, t) has the same sign as φ(z(n, t), γ(t), s/t)− 1.

We note the following properties of the function φ (defined on R2
++ × R+). First, φ is strictly

increasing in γ (as γ/(z + γ) is). Second, φ is strictly convex in z. Indeed, ∂2

∂z2
ez−1
z(z+γ) = aγ2+bγ+c

z3(z+γ)3
,

where a = 2ez + z2ez − 2zez − 2, b = 2z(3ez + z2ez − 3zez − 3) and c = z2(6ez + z2ez − 4zez − 6),

and it can be verified numerically that a > 0, c > 0 and b2 − 4ac < 0 for all z > 0, which implies

that aγ2 + bγ + c > 0 and thus ∂2

∂z2
ez−1
z(z+γ) > 0. Thus, for x = 0, φ is strictly convex in z. Moreover,

as the sum of two strictly convex functions is strictly convex, it follows that the functions ez

z(z+γ)

(as the sum of ez−1
z(z+γ) and the strictly convex function 1

z(z+γ)) and then also φ, for arbitrary x > 0,
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are strictly convex in z. Third, for any γ > 0, we have

lim
z→∞

φ(z, γ, x) = +∞ for all x ≥ 0,(5.15)

lim
z→0

φ(z, γ, x) =


+∞ if x > 0

1 if x = 0.

(5.16)

Indeed, (5.15) is immediate from the behavior of the exponential function for z → ∞, (5.16) in

the case x > 0 is immediate as the denominator of φ tends to 0 whereas the numerator tends to

γx > 0, and (5.16) for x = 0 follows easily from the Taylor series representation of ez − 1.

The above observations imply that for each x > 0 (and each γ > 0), φ(·, γ, x) is strictly

decreasing up to its global minimum, determined by the first order condition

(5.17) φz(z, γ, x) = γ
(γ + 2z) + ez(−2z − γ + zγ + z2)(1 + x)

z2(z + γ)2
= 0,

and strictly increasing from thereon. For the case x = 0, a straightforward application of L’Hôpital’s

rule (Estrada and Pavlovic 2017) yields limz→0 φz(z, γ, 0) = γ−2
2γ . Combined with (5.16), it follows

that φ(·, γ, 0) has its global minimum at the solution of (5.17) and attains a value below 1 at that

minimum if γ < 2, whereas, if γ ≥ 2, φ(·, γ, 0) − 1 is positive on (0,∞). Hence, if γ(t) ≥ 2, i.e.,

for t ≤ t∗(0), ψ(·, 0, t) is strictly increasing on (1,∞), whereas ψ(·, 0, t) is unimodal if γ(t) < 2, i.e.,

for t > t∗(0): in the latter case, the equation φ(z, γ(t), 0) = 1 has a unique solution ẑ ∈ (0,∞),

and ψ(·, 0, t) is strictly increasing for values of n satisfying z(n, t) = γ(t)/(n − 1) > ẑ and strictly

decreasing for values of n for which z(n, t) < ẑ. We have thus proven part (ii.a) of the lemma, as

well as part (i) in the case s = 0.

Next, for any x > 0, the unique solution z∗ = z∗(γ, x) of (5.17) solves

(5.18) (1 + x)ez =
γ + 2z

γ + 2z − zγ − z2
,

which yields minz φ(z, γ, x) = φ(z∗, γ, x) = γ (1+x)ez
∗−1

z∗(z∗+γ) = γ
γ+2z∗−z∗γ−z∗2 . Recalling that g(γ) =

eγ−2(4/γ − 1) is strictly decreasing in γ, with limγ→0 g(γ) = ∞ and limγ→∞ g(γ) = −∞, we let

γ∗ = γ∗(x) denote the unique value of γ solving 1 + x = g(γ) and note that γ∗(x) is strictly
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decreasing in x with limx→0 γ
∗(x) = 2. Moreover, for γ = γ∗, z = 2 − γ solves (5.18), i.e., we

have z∗ = 2− γ∗, and consequently also φ(z∗, γ∗, x) = γ∗

γ∗+2z∗−z∗γ−z∗2 = 1 in this case. Since φγ is

strictly positive, it follows that minz φ(z, γ, x) ≥ 1 for γ ≥ γ∗ and minz φ(z, γ, x) < 1 for γ < γ∗.

In particular, for t ≤ t∗(s), which is equivalent to γ(t) ≥ γ∗(s/t∗(s)), as well as to γ(t) ≥ γ∗(s/t),

or 1 + s/t ≥ g(γ(t)), ψ is strictly increasing in n. This concludes the proof of (i).

Hence, we assume from now on that s > 0 and t > t∗(s) (i.e., 1+s/t < g(γ(t)), or γ(t) < γ∗(s/t)).

From the above arguments, it follows that minz φ(z, γ(t), s/t) < 1 in this case, so that the equation

φ(z, γ(t), s/t) = 1 has two solutions on (0,∞). Denote them by z1 = z1(s, t) and z2 = z2(s, t),

with z1 > z2. It follows that ψ(·, s, t) has exactly two critical points on (1,∞), a local maximum

at n1 = γ(t)/z1 + 1 and local minimum at n2 = γ(t)/z2 + 1 > n1.

We now identify how the critical points n1 and n2 are located relative to n = 2 (where z(n, t) =

γ(t)). To this end, note that

φ(γ, γ, x) =
(1 + x)eγ − 1

2γ
≷ 1 if and only if 1 + x ≷ h(γ).

It follows that if 1+s/t < h(γ(t)), i.e., for t ∈ (t1(s), t2(s)) (see Observation 3), φ(γ(t), γ(t), s/t) <

1, which implies z2 < γ(t) < z1, i.e., n1 < 2 < n2. We thus consider the case 1 + s/t > h(γ(t)), i.e.,

t ∈ (t∗(s), t1(s)) ∪ (t2(s), q(1−q)(ch−cl)), from now on (the first interval is non-empty if γ(t∗(s)) 6=

1, see Observation 3). Hence, φ(γ(t), γ(t), s/t)) > 1, which implies in particular φz(γ(t), γ(t), s/t) =

3+eγ(t)(2γ(t)−3)(1+s/t)
4γ(t)2

6= 0 (as minz φ(z, γ(t), s/t) < 1, γ(t) is not the minimum of φ(·, γ(t), s/t)). As

φz(γ(t2(s)), γ(t2(s)), s/t2(s)) 6= 0 (φ(γ(t2(s)), γ(t2(s)), s/t2(s)) = 1, so z = γ(t2(s)) is not the min-

imum of φ(·, γ(t2(s)), s/t2(s))), φz(γ(·), γ(·), s/·) is continuous, and (t2(s), q(1− q)(ch− cl)) is con-

nected, the intermediate value theorem implies sign(φz(γ(t), γ(t), s/t)) = sign(φz(γ(t2(s)), γ(t2(s)), s/t2(s)))

for all t ∈ (t2(s), q(1− q)(ch − cl)). Using 1 + s/t2(s) = h(γ(t2(s))), it follows that

3+eγ(t2(s))(2γ(t2(s))−3)(1+s/t2(s)) = 3+(2γ(t2(s))−3)(2γ(t2(s))+1) = 4γ(t2(s))(γ(t2(s))−1) < 0,

where the last inequality uses γ(t2(s)) < 1
2 (see Observation 3). Thus, for all t ∈ (t2(s), q(1 −

q)(ch−cl)) (for which γ(t) < γ(t2(s)) < 1
2), z = γ(t) is in the decreasing part of the convex function

φ(·, γ(t), s/t), and hence γ(t) < z2 < z1, i.e., n1 < n2 < 2. Similarly, sign(φz(γ(t), γ(t), s/t)) =
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sign(φz(γ(t1(s)), γ(t1(s)), s/t1(s))) = sign(γ(t1(s))−1) for all t ∈ (t∗(s), t1(s)). If γ(t∗(s)) < 1 then

γ(t) < 1 for all t ∈ (t∗(s), t1(s)), whereas if γ(t∗(s)) > 1 then (see Observation 3) γ(t) > 1 for

all t ∈ (t∗(s), t1(s)). In the latter case, z = γ(t) is in the increasing part of the convex function

φ(·, γ(t), s/t), and hence z2 < z1 < γ(t), i.e., 2 < n1 < n2. This concludes the proof of (ii.b).

Result (iii) follows immediately from formula (5.13) and 1− e−z = z + o(z) as z → 0.

Proof of Proposition 1. If s = 0, by parts (i) and (ii.a) of Lemma 4, we only need to compare

ψ(2, 0, t) and limn→∞ ψ(n, 0, t) (for t > t∗(0)). By Lemma 4 (iii), limn→∞ ψ(n, 0, t) = tγ(t), whereas

ψ(2, 0, t) = 2t(1− e−γ(t)). Hence, ψ(2, 0, t) ≷ limn→∞ ψ(n, 0, t) for γ̂ ≷ γ(t), where γ̂ ≈ 1.594 is the

unique value of γ such that 1− e−γ = γ/2. As t = q(1−q)(ch−cl)
q+(1−q)eγ(t) and e1.594 ≈ 4.92, claim (i) follows.

If 0 < s < s̄, Lemma 4 (i) implies that no = 2 for t ≤ t∗(s), and Lemma 4 (ii.b) shows that

for t ∈ (t1(s), t2(s)) (i.e., 1 + s/t < h(γ(t))), n = 2 lies between the local maximum n1 and the

local minimum n2, which implies no = n2 > 2. Also, for all t ∈ (t2(s), q(1 − q)(ch − cl)), we have

1 + s/t > h(γ(t)) and γ(t) < γ(t2(s)) < 1/2, so that, by Lemma 4 (ii.b), n2 < 2 and thus no = 2.

Next, if γ(t∗(s)) ≤ 1, then γ(t) < 1 (and 1 + s/t > h(γ(t))) for all t ∈ (t∗(s), t1(s)), i.e., no = 2

in this case. This completes the proof of (iii).

To complete the proof of (ii), note that if γ(t∗(s)) > 1 then γ(t1(s)) > 1, so that Lemma 4 (ii.b)

implies 2 < n1(s, t) < n2(s, t) for all t from the non-empty interval (t∗(s), t1(s)). Thus, for these val-

ues of t, we have to compare ψ(2, s, t) and ψ(n2(s, t), s, t) to determine no. As ψ(·, s, t∗(s)) is strictly

increasing and ∂
∂nψ(2, s, t∗(s)) > 0 (recall from the proof of Lemma 4 that the only point where

∂
∂nψ(·, s, t∗(s)) vanishes corresponds to z = 2 − γ(t∗(s)) < 1 < γ(t∗(s)), i.e., a value of n strictly

above 2), it follows by continuity that no = 2 for t sufficiently close to t∗(s). On the other hand, for

t = t1(s), we have 2 = n1(s, t) < n2(s, t) (so ψ(2, s, t1(s)) > ψ(n2(s, t1(s)), s, t1(s))), and it follows

by continuity that no > 2 for t sufficiently close to t1(s). With regard to Remark ??, we also note

that formula (5.13) implies ψ(2, s, t) = 2((1−e−γ(t))t+s) = 2t(1+s/t−e−γ(t)), and ψ(n2(s, t), s, t) =((
1− e−z(n2(s,t),t)

)
t+ s

) ( γ(t)
z(n2(s,t),t) + 1

)
= te−z(n2(s,t),t) (γ(t)+z(n2(s,t),t))2

γ(t) φ(z(n2(s, t), t), γ(t), s/t) =

te−z(n2(s,t),t) (γ(t)+z(n2(s,t),t))2

γ(t) , where the final step uses φ(z(n2(s, t), t), γ(t), s/t) = 1 (recall (5.14)

and that n2(s, t) is a critical point of ψ(·, s, t)). Thus, no > 2 for those values t ∈ (t∗(s), t1(s))

satisfying e−z(n2(s,t),t) (γ(t)+z(n2(s,t),t))2

γ(t) < 2(1 + s/t− e−γ(t)), and no = 2 for the remaining values.
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Finally, if s ≥ s̄, we have 1 + s/t ≥ h(γ(t)) and γ(t) < 1 for all t > t∗(s), so that Lemma 4

implies no = 2 for all values of t.

Proof of Proposition 2. This follows immediately from the basic theory of monotone comparative

statics, because minimizing ψ is equivalent to maximizing −ψ and −ψ(n, s, t) is strictly submodular

(has strictly decreasing differences) in (n, s). For example, one can simply invoke Theorem 2.8.4 in

Topkis (1998).

Proof of Proposition 3. For s < s′, we have ϕ(s, t) = ψ(no(s, t), s, t) ≤ ψ(no(s′, t), s, t) <

ψ(no(s′, t), s′, t) = ϕ(s′, t). Thus, ϕ is strictly increasing in s.

To argue that ϕ(s, t) is unimodal in t, we show first that ψ(2, s, t) is unimodal in t. Letting

τ = t/(ch − cl), we have ψ(2, s, t) = 2τ(ch − cl)
(

1−
(

τ(1−q)
q(1−q−τ)

))
+ 2s. Note that t < q(1 −

q)(ch − cl) implies τ < q(1 − q) and 1 − q − τ > (1 − q)2 > 0. We first compute d
dtψ(2, s, t) =

2 ∂
∂τ

[(
1− τ(1−q)

q(1−q−τ)

)
τ
]

= 2 τ
2−2τ(1−q)+q(1−q)2

q(1−q−τ)2
and d2

dt2
ψ(2, s, t) = − 4

(ch−cl)q
(1−q)3+τ(1−q)

(1−q−τ)3
< 0. Thus,

ψ(2, s, ·) is strictly concave, and attains its maximum at τ = 1− q− (1− q)3/2. Given Proposition 1

(iv) this shows in particular that ϕ(s, t) is unimodal in t if s ≥ s̄.

Next, by Proposition 1 (i) and Lemma 4 (iii), for s = 0 we have ϕ(s, t) = min{ψ(2, 0, t), limn→∞ ψ(n, 0, t)}

and limn→∞ ψ(n, 0, t) = γ(t)t. Since d2

dt2
(γ(t)t) = 1

ch−cl
∂2

∂τ2

(
−τ ln τ(1−q)

q(1−q−τ)

)
= −1

t
(1−q)2

(1−q−τ)2
< 0, we

see that limn→∞ ψ(n, 0, t) is strictly concave (and attains a maximum on (0, q(1 − q)(ch − cl),

as limt→0 γ(t)t = 0 and limt→q(1−q)(ch−cl) γ(t)t = 0). Thus, ϕ(s, t) is strictly concave and has a

maximum in (0, q(1− q)(ch − cl)). In particular, it is unimodal in t.

Finally, for s ∈ (0, s̄), we know from Lemma 4 (ii.b) and Proposition 1 (ii) and (iii) that ϕ(s, t)

= min{ψ(2, s, t), ψ(n2(s, t), s, t)} for all values of t, and ϕ(s, t) = ψ(2, s, t) for t close to 0 or close

to t̄ = q (1− q) (ch − cl). Given that ψ(2, s, ·) is strictly concave and attains a maximum on (0, t̄),

ϕ(s, ·) is unimodal if ψ(n2(s, t), s, t) is either strictly increasing, strictly decreasing or unimodal over

the range of values of t for which ϕ(s, t) = ψ(n2(s, t), s, t) (see Proposition 1 for the characterization

this set, which is a subset of (t∗(s), t̄), the range of values of t for which n2(s, t) exists).

By the envelope theorem, we have

(5.19)
d

dt
ψ(n2(s, t), s, t) = n2(s, t)

(
1− e−

γ(t,q)
n2(s,t)−1

(
1− tγt(t, q)

n2(s, t)− 1

))
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where we have added q explicitly as an argument of the function γ, and γt = ∂γ(t, q)/∂t. We need

to check that d
dtψ(n2(s, t), s, t) is either always positive, always negative, or changes sign exactly

once, from positive to negative, as t increases. The presence of the exponent in (5.19) combined

with the lack of an explicit expression for n2 makes an analytical proof infeasible. Therefore,

we verify the result numerically. Recall from the proof of Lemma 4 that when n2(s, t) exists,

i.e., for t ∈ (t∗(s), t̄), it is obtained from z2(s, t, q), the smaller one of the two solutions of the

equation φ(z, γ(t, q), s/t) = 1, via z2(s, t, q) = γ(t,q)
n2(s,t)−1 . Using this, as well as tγt(t, q) = − 1−q

1−q−τ ,

d
dtψ(n2(s, t), s, t) can be rewritten as n2(s, t)

(
1− e−z2(s,t,q)

(
1 + 1−q

1−q−τ
z2(s,t,q)
γ(t,q)

))
. Using a fine grid

of values of q and σ = s/(ch− cl), we first compute τ∗(s, q) (note that, in view of the definitions of

γ and z2, it is clear that d
dtψ(n2(s, t), s, t) does not depend on ch− cl, i.e., is a function of σ and τ ∈

(0, q(1−q))). We then choose a fine grid of (τ∗(s, q), q(1−q)) to compute the corresponding values of

z2(s, t, q) numerically and evaluate d
dtψ(n2(s, t), s, t). We find that d

dtψ(n2(s, t), s, t) indeed changes

sign exactly once, from positive to negative, if q is not too large. If q is large, d
dtψ(n2(s, t), s, t) is

always negative.30 To visualize the result, we plot d
dtψ(n2(s, t), s, t) (with ch − cl = 1, i.e., t = τ

and s = σ for simplicity) for three values of q in Figure A.1. Hence, ϕ(s, t) is indeed unimodal in

t.

30The Python code and the data matrix are available upon request.

33



Figure A.1: d
dtψ(n2(s, t), s, t) (with ch− cl = 1, i.e., t = τ and s = σ for simplicity) for three values

of q: q = 0.25, q = 0.50, q = 0.75.
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